

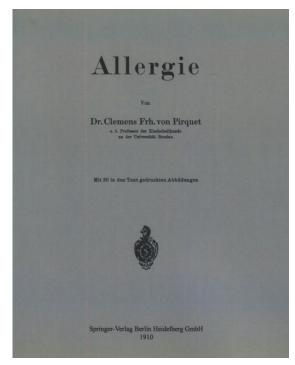
Mysteries of IgE blood tests in Allergy Diagnostics

Anthea Yeung
Sales & Marketing Manager
9 December 2019

When was the term "Allergy" born?

1706?

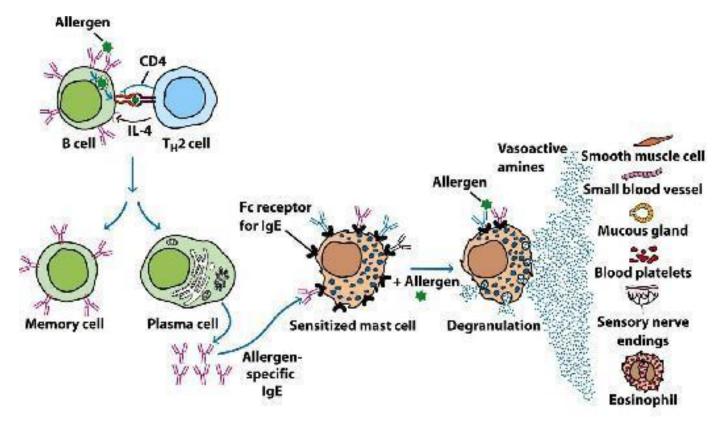
1806?


1906?

When was the term "Allergy" born?

The word "allergy" first appeared on July 24,

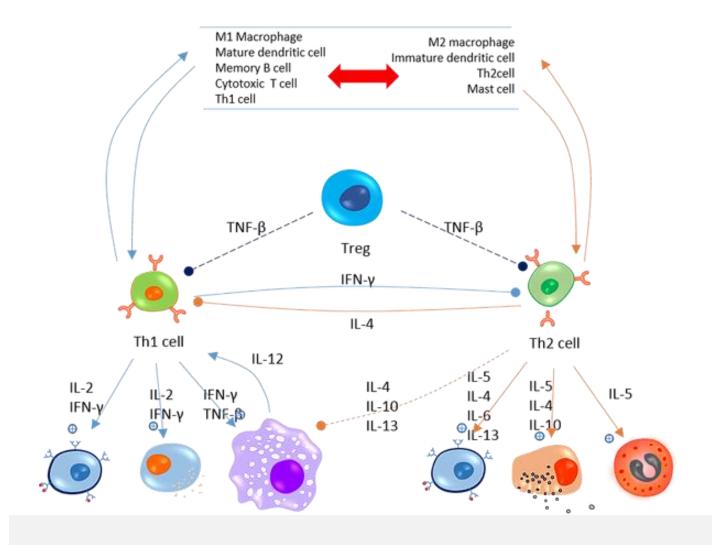
1906 in the


Münchener Medizinische Wochenschrift in an essay written by Clemens von Pirquet, a pediatrician from Vienna.

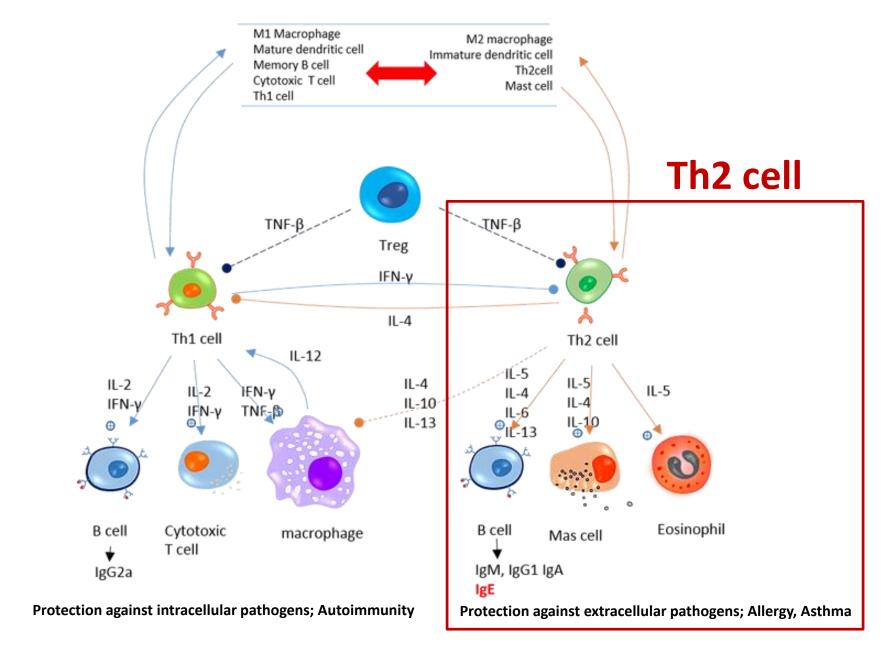
What is Allergy?

A chronic condition involving an abnormal reaction to an ordinarily harmless substance called an **allergen**. The immune system views the allergen as an invader and a chain reaction is initiated. White blood cells of the immune system produce **IgE antibodies**. These antibodies attach themselves to mast cells, causing a release of potent chemicals such as histamine, leukotrienes that cause symptoms.

Allergy Symptoms 過敏症狀

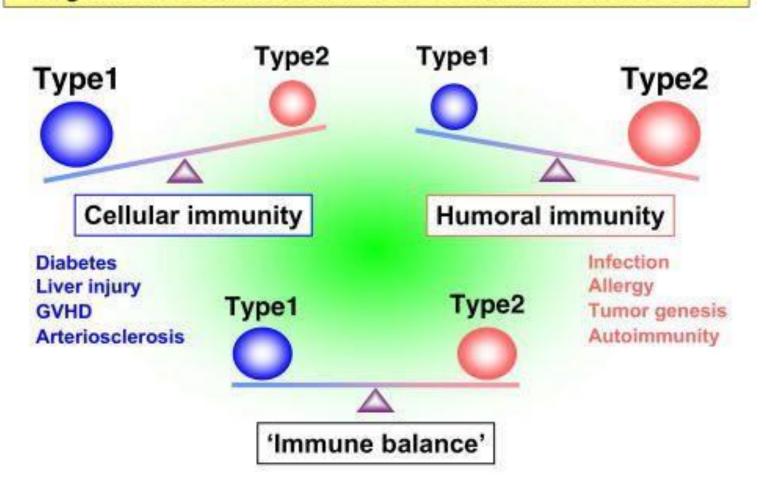

- itchy, swelling eyes 眼睛紅腫發癢
- nasal congestion鼻塞
- runny nose 流鼻水
- sneezing, itching 打噴嚏,鼻癢
- eczema 濕疹
- swelling mucous membrane 黏膜腫脹
- diarrhea, abdominal pain 腹瀉,腹痛
- asthma 哮喘
- anaphylaxis 休克

References:


- American College of Allergy, Asthma & Immunology (ACAAI):

http://acaai.org/allergies/symptoms

Allergy – Th1 or Th2 directs allergic response?



Allergy – Th1 or Th2 directs allergic response?

Allergy – Th1 or Th2 directs allergic response?

Regulation of 'Immune balance' is critical for our health

Immunoglobulin	Concentration in normal human blood
IgA	?
IgD	?
IgE	?
lgG	?
IgM	?

Immunoglobulin	Concentration in normal human blood
IgG	8 g/l*
IgA	3.5 g/l
IgM	1.5 g/l
lgD	0.03 g/l
lgE	0.00003 g/l (0.3μg/l)**

^{*}equals 11-18% of the total proteins in the blood

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206235/

^{**1} $kU/L = 2.4 \text{ ng/mL} = 2.4 \mu g/l$

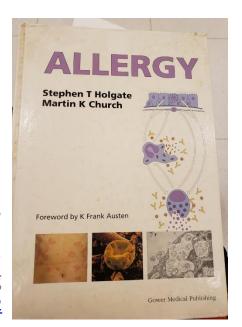
Immunoglobulin	Concentration in normal human blood	Half Life
IgG	8 g/l*	?
lgE	0.00003 g/l (0.3μg/l)**	?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206235/

^{*}equals 11-18% of the total proteins in the blood

^{**1} $kU/L = 2.4 \text{ ng/mL} = 2.4 \mu\text{g/l}$

Immunoglobulin	Concentration in normal human blood	Half Life
IgG	8 g/l	20 days
lgE	0.00003 g/l (0.3µg/l)	2 days


*equals 11-18% of the total proteins in the blood

**1 $kU/L = 2.4 \text{ ng/mL} = 2.4 \mu\text{g/l}$

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206235/

Textbook: "Allergy" by Stephen T Holgate, Martin K Church.

Gower Medical Publishing https://www.abebooks.co.uk/servlet/BookDetailsPL?bi=9011097402

What is Allergen?

Aeroallergens: dust mite, cockroach, cat/dog dander, mold, pollens etc.

Food allergens: milk, egg white, wheat, tree nuts, peanuts, fish etc.

Drug allergens: Ampicilloyl, Amoxicilloyl, Penicilloyl G, Penicilloyl V etc.

References:

-European Academy of Allergology and Clinical Immunology (EAACI):

http://www.eaaci.org/patients/allergic-and-immunologic-diseases-and-causes/what-is-an-allergy.html

- -World Allergy Organization (WAO): http://www.worldallergy.org/public/allergic_diseases_center/overview.php
- -American Academy of Allergy, Asthma & Immunology (AAAAI): https://www.aaaai.org/conditions-and-treatments/conditions-dictionary/allergy

Common Allergens 常見致敏原

過敏疾病	症狀	懷疑致敏原 (南中國常見)
濕疹、蕁麻疹	濕疹:皮膚發癢並出現紅疹,嬰兒常見於面頰,兒童則在手肘及膝蓋蕁麻疹:皮膚發癢及呈紅色或蒼白色風團(風癩)	食物:牛奶、蛋白、黄豆、 花生、核果、小麥、海鮮 環境:塵蟎、動物皮屑、 葡萄球菌
過敏性腸胃炎	慢性肚瀉 嘔吐 腹痛 拒絕進食	嬰兒:牛奶、蛋白、黃豆、 花生 其他年齡人士:牛奶、 蛋白、黃豆、花生、核果、 小麥、海鮮、魚
鼻敏感	鼻塞 經常打噴嚏、流鼻水 眼和鼻發癢、咳嗽 疲乏、聽力下降	季節性:花粉、霉菌 持續性:塵蟎、動物皮屑、 霉菌、蟑螂
哮喘	呼吸急速 呼氣困難、咳嗽 支氣管痙攣	食物(幼兒):牛奶、蛋白、 黄豆、穀類、海鮮 食物(其他年齡人士): 花生、核果 環境:塵蟎、動物皮屑、 霉菌、蟑螂、花粉

What is the prevalence of sensitizations?

J.Li et al. A multicenter study assessing the prevalence of sensitizations in patients with asthma and/or rhinitis in China. Allergy 2009: 64: 1083-1092

6304 patients, standardized questionnaire, skin prick tests with 13 common aeroallergens, Feb 2006 – Mar 2007, 17 cities with 24 participating centres.

Allergens	Overall prevalence
Cat dander	Pollen - <i>Artemisia vulgaris</i> 北艾, 多年生草本
Dog dander	Pollen - Ambrosia artemisifolia 豚草
Cockroach – Blatella germanica	Mixed mould I
Cockroach - American	Mixed mould IV
Mite – Dermatophadoides farinae	Mixed grass pollen
Mite – Dermatophadoides pteronyssinus	Mixed tree pollen
Mite – Blomia tropicalis	
	a Ardobe Mak

What is the prevalence of sensitizations?

Allergens	Overall prevalence
Mite – Dermatophadoides farinae	59.0%
Mite – Dermatophadoides pteronyssinus	57.6%
Mite – Blomia tropicalis	40.7%
Cockroach - American	16.1%
Dog dander	14.0%
Cockroach – Blatella germanica	11.5%
Pollen - <i>Artemisia vulgaris</i> 北艾	11.3%
Cat dander	10.3%
Pollen - <i>Ambrosia artemisifolia</i> 豚草	6.5%
Mixed mould I	6.3%
Mixed mould IV	4.4%
Mixed grass pollen	3.5%
Mixed tree pollen	2.2%

Common Allergens in Hong Kong

Environment allergens

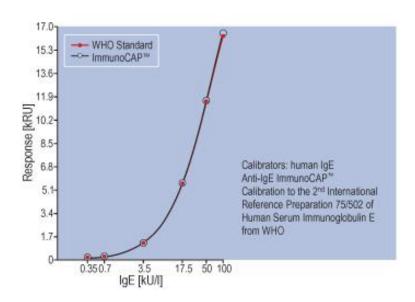
- House dust mite D.pteronyssinus, D. farinae
- Cockroach
- Dog dander
- Cat dander
- Molds

Food allergens

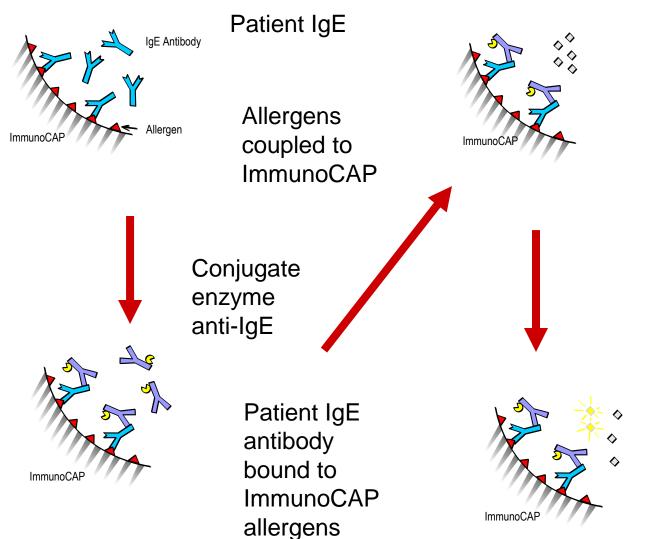
- Egg white
- Cow's milk
- Shrimp

Reference:

CK Wong et al. Molecules 2016, 21, 471
Ho, M.H., et al. Asian Pac J Allergy Immunol, 2012. 30(4): p. 275-84
Hon, et al. Pediatr Allergy Immunol. 2011: 22: 50-53
Sun, et al. Allergy 2009; 64; 1083-1092
Leung TF, et al. Pediatr Allergy Immunol. 2009 Jun;20(4):339-46. Epub 2008 Sep 17
Leung TF, et al. Journal of Asthma. Vol. 39, No. 6, pp. 523–529, 2002.

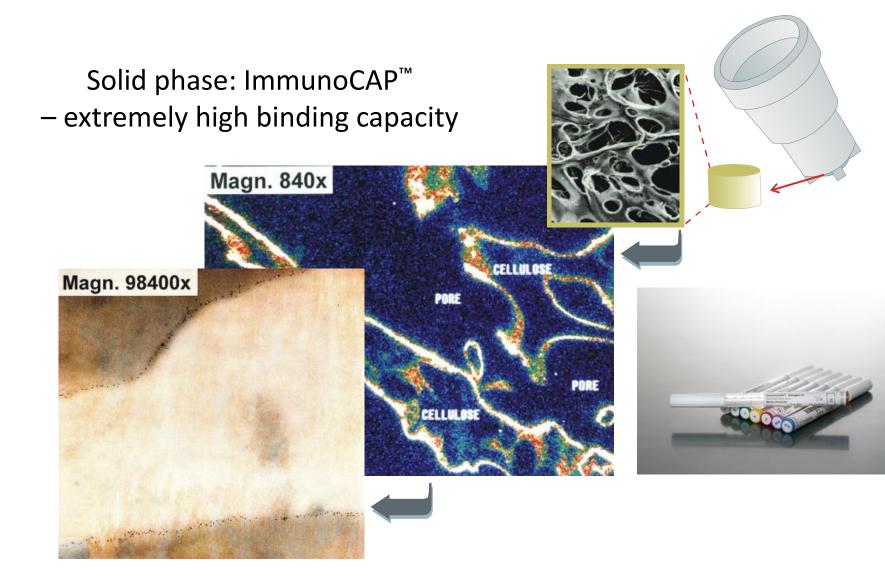


ImmunoCAP slgE Test - History



- 1968 WHO deemed the existence of a new immunoglobulin class IgE
- Radioimmunoassay test for IgE in serum
- 1974 Pharmacia > Radioallergosorbent test / Phadebas RAST measure isotopically labeled sIgE to specific allergen
- 1989 Pharmacia launched CAP system WHO standard 6-point calibration
- 1995 Pharmacia launched UniCAP 100 fully automated

ImmunoCAP slgE Test - Principle



Fluorogenic substrate

Conjugate bound to patient IgE

Conjugate enzyme reacts with substrate forming a fluoroscent product

ImmunoCAP slgE Test - Principle

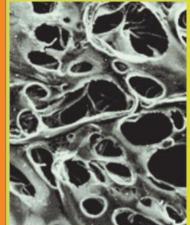
ImmunoCAP slgE Test - Performance

The conventional way to present clinical validity

Sensitivity 89% Specificity 91%

Dr's conclusion	UniCAP® Specific IgE Positive Negative Total			
Positive	1121	144	1265	
Negative Total	360 1481	3545 3689	3905 5170	

The clinical performance of UniCAP Specific IgE was documented in clinical trials in six countries, Italy, Spain, Germany, The Netherlands, Sweden and Great Britain, on 894 patients with suspected allergy.


Clinical sensitivity and sensitivity were calculated as agreement between the test result and a specialist diagnosis based on the established diagnostic routines of the clinic.

Why ImmunoCAP...

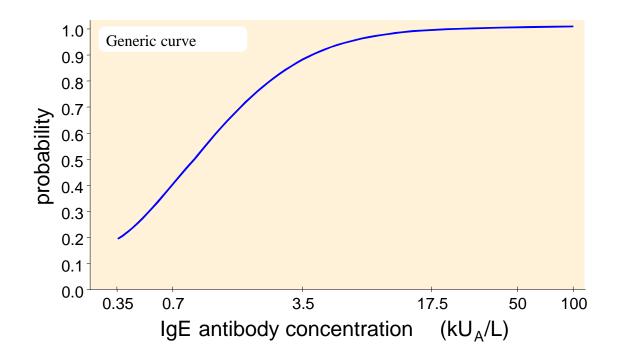
- Recognized as Gold Standard for in vitro IgE testing
- Published in over 4,000 medical journals
- FDA cleared, CE-IVD marked
- Production is ISO 13485 & GMP certified
- Standardized to WHO IgE reference 75/502
- Precise and accurate results: proven in extensive researches and external quality assessment programs (CAP, UKNeqas etc.)
- Being used in over 3,000 laboratories worldwide
- Dedicated to allergy testing: The broadest allergen coverage, including allergen components. Detailed information of every ImmunoCAP allergen can be found in our professional website:

thermoscientific.com/phadia

Sophisticated ImmunoCAP technology

Excessive allergen components are covalently bound to the high capacity, 3-dimensional cellulose polymer to give reliable results.

Fully Automated Analyzer


Standardized, Precise

ImmunoCAP sIgE Test – result interpretation

Probability curve

Introducing the actual measured concentration of specific IgE in kU_A/L instead of simply positive results and still expressing the Dr's conclusion as negative or positive, we get a probability curve.

ImmunoCAP sIgE Test – result interpretation

Old

Quantitative Results (kU _A /l)	Level of Allergen Specific Antibody	Semi-Quantitative Results (Specific IgE Class)
< 0.35	Absent or undetectable	0
0.35 to < 0.7	Low	1
0.7 to < 3.5	Moderate	2
3.5 to < 17.5	High	3
17.5 to < 50	Very high	4
50 to < 100	Very high	5
100 and larger	Very high	6

Traditionally RAST TESTS have been reported as CLASS 0 to CLASS 6. Class 0 indicates no allergy. Class 5 or 6 indicates high allergy

ImmunoCAP sIgE Test – result interpretation

Increased concentration of serum IgE

= Increased likelihood of clinical symptoms

(based on a reference material of >5.000 test results)

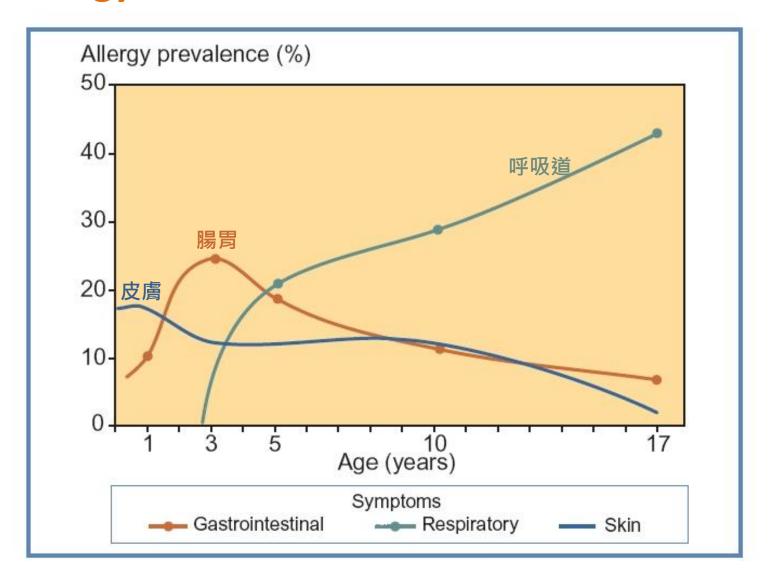
REFERENCE Normal values: ImmunoCAP Allergen <0.1 kU_A/I ImmunoCAP Allergen mix/Phadiatop <0.35 kU_A/I

tic allergy is (%) 08						
Proportion with symptomatic allergy Probability of symptoms (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
ion with signal to 40 - 20 -						
Prof				© Phadia AB Valid for Imm	2010 unoCAP® techno	logy only
0.1	0.3 Ig	1 E antibod	3 ly concen	10 tration (kU _A	30 /I)	100

Result (kU _A /I)	lgE ab level	Symptom relation
<0.1	Undetectable	Unlikely
0.1 - 0.5	Very low	Uncommon
0.5 - 2	Low	Low
2 -15	Moderate	Common
15 - 50	High	High
> 50	Very high	Very high

A general model for interpretation of IgE antibody levels in relation to clinical symptoms.

The slope of this curve may vary and shift more to the left or to the right due to different factors that should be considered for a final allergy diagnosis such as:


Age

- Type of sensitizing allergens
- Degree of atopy
- Previous symptoms

Allergen load

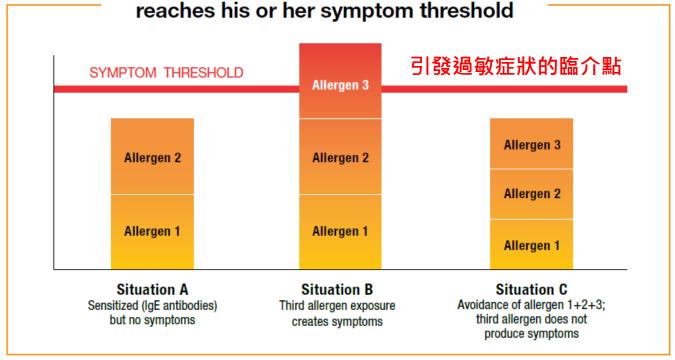
Other triggering factors

Allergy March 過敏進行曲

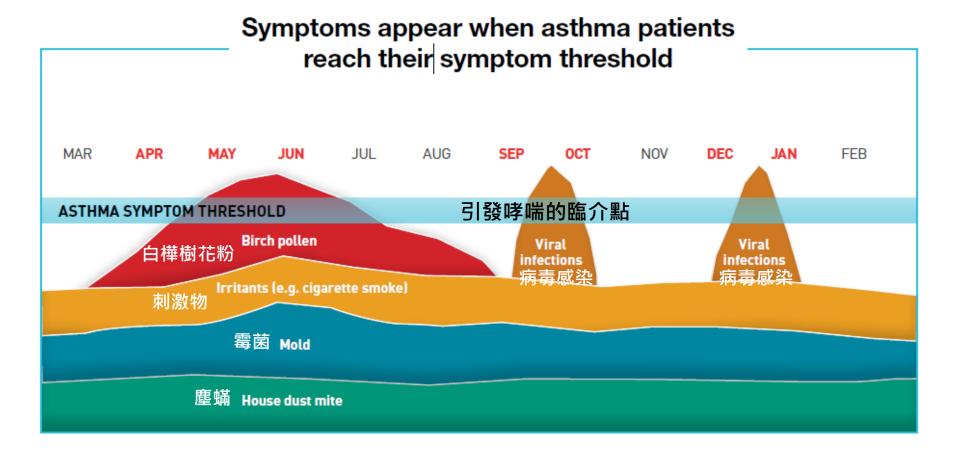
Reference: Data from Saarinen. UM et al. Lancet 1995;346:1065-9.

Why Negative?

Laboratory Report


ImmunoCAP Specific IgE 0 - 100

Identity	Test	Conc	Cut-off
Trump	f1 egg white	0.06	Negative
Trump	f2 cow milk	0.08	Negative
Trump	f13 peanut	0.02	Negative
Trump	f23 crab	0.05	Negative
Trump	f24 shrimp	0.08	Negative
Trump	China	>100	Positive


Why Negative? Symptom Threshold

https://www.thermofisher.com/diagnostic-education/patient/wo/en/understanding-allergies/symptom-threshold.html

Why Negative? Symptom Threshold

Why Negative? Histamine – Containing food

Fis	h										
	3	Н	Α		anchovies 鯷魚/鳳尾魚						
Г	0	H!	Α	П	fish (freshly caught or frozen)			Extremely depending on freshness and species			
Г	3	H!	Α	П	ish (in the shop in the cooling rack or on ice)			Extremely depending on freshness and species			
	0	H!			trout (freshwater): brown trout, brook trout, rainbo	w tro	out	Perishable. Rapid histamine formation.			
	3	н	Α		tuna						
Se	Sea food Histamine										
	2	H!		L	bivalves (mussels, oisters, clams, scallops,)	0	Wel	tolerated, no symptoms expected at usual in-			
Г	2	H!		L	crab		take	take			
Г	2	H!		L	crab	1		Moderately compatible, minor symptoms, occa-			
	2	H!		L	crawfish			sional consumption of small quantities is often tol- erated			
	2	H!		L	crayfish	2	0.0.	Incompatible, significant symptoms at usual intake			
	2	H!		L	langouste	3	Very poorly tolerated, severe symptoms				
Г	2	H!		L	lobster	ľ	_	No general statement possible			
Г	2	H!		L	oysters	7					
Г	2	H!		L	prawn	Ľ					
Г	2	H!		L	rock lobsters						
Г	2	H!		L	seafood, sea food						
	2	H!		L	shellfish						
Г	2	H!		L	shrimp						
Г	2	H!		L	spiny lobsters	obsters					

Why Negative? Histamine Toxicity

Fish e.g. tuna, mackerel, mahi mahi, anchovy, herring, bluefish, amberjack, markin that contain naturally high levels of the chemical histidine

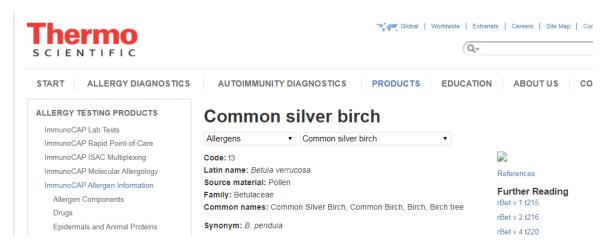
Histamine-producing bacteria

e.g. Photobacterium phosphoreum

e.g. Raoultella planticola

Histamine Toxicity

Patients have unusually low levels of enzyme diamine oxidase



I didolleo		Зусатого				
Tree Pollens						
Weed Pollens	Aller	Allergens				
Venoms	Code	Name	Latin name			
Special Allergen Service	t19	Acacia	Acacia longifolia			
Laboratory Excellence	t5	American beech	Fagus grandifolia			
	t73	Australian pine	Casuarina equisetifol			
AUTOIMMUNITY TESTING PRODUCTS	t37	Bald cypress	Taxodium distichum			
Laboratory Excellence	t56	Bayberry	Myrica cerifera			
Connective Tissue Diseases	t1	Box-elder	Acer negundo			
Rheumatoid Arthritis	t212	Cedar	Libocedrus decurrens			
Antiphospholipid Syndrome	t45	Cedar elm	Ulmus crassifolia			
Vasculitis and anti-GBM associated	t206	Chestnut	Castanea sativa			
Diseases	t3	Common silver birch	Betula verrucosa			
Celiac Disease/Other Gastrointestinal Diseases	t14	Cottonwood	Populus deltoides			
Thyroid Diseases	t222	Cypress	Cupressus arizonica			
Miscellaneous	t214	Date	Phoenix canariensis			
	t207	Douglas fir	Pseudotsuga taxifolia			
PHADIA LABORATORY SYSTEMS	t205	Elder	Sambucus nigra			
Phadia 100	t8	Elm	Ulmus americana			
Phadia 250	t18	Eucalyptus, Gum-tree	Eucalyptus spp			
Phadia 1000	t25	European ash	Fraxinus excelsior			
Phadia 2500	t2	Grey alder	Alnus incana			
Phadia 5000	t44	Hackberry	Celtis occidentalis			
	t4	Hazel	Corylus avellana			
SOFTWARE & SERVICES	t209	Horn beam	Carpinus betulus			
ImmunoCAP ISAC Xplain	t203	Horse chestnut	Aesculus hippocastai			
Phadia IDM	t23	Italian/Mediterranean/Funeral cypress	Cupressus sempervir			
Phadia LabCommunity	t17	Japanese cedar	Cupressus japonica			
Phadia MIA	t24	Japanese cypress	Chamaecyparis obtus			
Quality Club	t208	Linden	Tilia cordata			
	t11	Maple leaf sycamore, London plane	Platanus acerifolia			

Allergens

Birch pollen contains at least 29 antigens (5). Allergens of molecular weights of 29.5, 17, 12.5, and 13 kDa had been isolated (6-7).

The following allergens have been characterised:

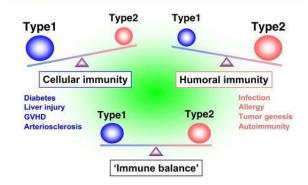
- . Bet v 1, a 17 kDa protein, a ribonuclease and a PR-10 protein (8-17).
- Bet v 2, a 15 kDa, a profilin (11,15-25).
- Bet v 3, a 24 kDa calcium-binding protein (19,26).
- Bet v 4, a 9 kDa calcium-binding protein (20,27-29).
- Bet v 5, a 35 kDa isoflavone reductase-related protein (30-32).
- Bet v 6, a 30-35 kDa protein, PCBER (Phenylcoumaran benzylic ether reductase) (33).
- Bet v 7, a 18 kDa protein, a cyclophilin (34).
- Bet v 11 (39).

The following recombinant allergens have been expressed:

- rBet v 1 (35).
- rBet v 2 (25,36-38).

4.07 Causes allergies or is otherwise toxic to humans Answer: NO

Australia/New Zealand Weed Risk Assessment adapted for Florida.


Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195.

	Bombax ceiba (red silk-cotton tree)								
Question number	Question	Answer	Score						
1.01	Is the species highly domesticated?	n	0						
1.02	Has the species become naturalised where grown?	1							
1.03	Does the species have weedy races?	1							
2.01	Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2-high)	2							
2.02									
2.03	2.03 Broad climate suitability (environmental versatility)								
2.04	Native or naturalized in habitats with periodic inundation								
2.05	Does the species have a history of repeated introductions outside its natural range?	у							
3.01	Naturalized beyond native range	n	-2						
3.02	Garden/amenity/disturbance weed	n	0						
3.03	Weed of agriculture	n	0						
3.04	Environmental weed	n	0						
3.05	Congeneric weed	n	0						
4.01	Produces spines, thorns or burrs	у	1						
4.02	Allelopathic	у	1						
4.03	Parasitic	n	0						
4.04	Unpalatable to grazing animals								
4.05	Toxic to animals	n	0						
4.06	Host for recognised pests and pathogens								
4.07	Causes allergies or is otherwise toxic to humans	n	0						
4.08	Creates a fire nazaro in natural ecosystems	n	0						
4.09	Is a shade tolerant plant at some stage of its life cycle	n	0						
4.1	Grows on infertile soils (oligotrophic, limerock, or excessively draining soils)								
4.11	Climbing or smothering growth habit	n	0						
4.12	Forms dense thickets	n	0						
5.01	Aquatic	n	0						
5.02	Grass	n	0						
5.03	Nitronen fixing woody plant	n	0						

Immunotherapy

To desensitize the specific allergens To provide lasting relief

- Sublingual immunotherapy (SLIT)
- Subcutaneous immunotherapy (SCIT)

Regulation of 'Immune balance' is critical for our health

https://acaai.org/allergies/allergy-treatment/allergy-immunotherapy

https://www.aaaai.org/conditions-and-treatments/library/allergy-library/immunotherapy-can-provide-lasting-relief

https://www.medpagetoday.com/allergyimmunology/allergy/63516

https://www.odactra.com/what-are-house-dust-mite-allergies

Helpful link

- Allergy in Hong Kong, Allergy Alliance, Sep 2014
 - http://www.allergy.org.hk/final_review.pdf
- Hong Kong Institute of Allergy
 - http://www.allergy.org.hk/
- Allergy Clinical and Experimental Allergy
 - www.ingenta.com/journals/browse/bsc/cea
- Annals of Allergy, Asthma and Immunology
 - http://allergy.edoc.com
- World Allergy Organization
 - www.worldallergy.org
- European Academy of Allergology and Clinical Immunology
 - www.eaaci.net
- American Academy of Allergy, Asthma and Immunology
 - www.aaaai.org
- American College of Allergy, Asthma & Immunology
 - www.acaai.org
- ImmunoCAP Allergy tests
 - thermoscientific.com/phadia
 - -http://www.phadia.com/zh-TW/ [中文]

Thank you!

